

Page 1 of 14

Unloading Master Data from SAP BI

7.0 using XMLA and C#

April 2008

Author

Hermann Daeubler, Senior Program Manager, Microsoft

Juergen Daiberl, Technical Evangelist, Microsoft

Page 2 of 14

This document is for informational purposes only. NEITHER OF THE CO-EDITORS MAKES ANY

WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS

DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights

under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval

system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or

otherwise), or for any purpose, without the express written permission of the Co-Editors.

Either Author may have patents, patent applications, trademarks, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any written

license agreement from the respective Co-Editor(s), the furnishing of this document does not give you

any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, any example companies, organizations, products, domain names, e-mail

addresses, logos, people, places and events depicted herein are fictitious, and no association with any

real company, organization, product, domain name, e-mail address, logo, person, place or event is

intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Outlook, PowerPoint, SharePoint, Visual

Studio, Windows, and other Microsoft products and services mentioned herein as well as their

respective logos are trademarks or registered trademarks of Microsoft Corporation.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services

mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG

in Germany and in several other countries all over the world. All other product and service names

mentioned are the trademarks of their respective companies. Data contained in this document serves

informational purposes only. National product specifications may vary.

The names of actual companies and products mentioned herein may be the trademarks of their

respective owners.

Page 3 of 14

Contents

Introduction ... 5

Sample ... 6

Walk-Through .. 7

Sample code ...13

References..14

Page 4 of 14

Summary

This paper describes how to unload data from SAP NetWeaver BI using C# and the

SAP NetWeaver BI XMLA Web service. The paper contains a walk-through of how to

use the XMLA Web service within a C# console program in order to unload master

data from SAP NetWeaver BI without the need of any additional driver or library

installation.

Applies to

 Microsoft .NET

 Microsoft Business Intelligence (Microsoft BI)

 Microsoft SQL Server Integration Services

 Microsoft SQL Server Reporting Services

 SAP NetWeaver 04s

 SAP NetWeaver BI

 XMLA

 C#

Keywords

SAP NetWeaver, SAP NetWeaver BI, XMLA, C#, Microsoft BI, Microsoft SQL Server,

SSRS, SSIS

Audience

IT Management, Technical Architects, Technical Consultants, Developers

Page 5 of 14

Introduction

In certain customer scenarios it‟s necessary to unload Master Data from SAP BI in

order to integrate with a Microsoft BI solution. The key question is how could or

should it be implemented?

Here is a list which shows five different approaches:

 Direct SAP NetWeaver BI database table access (not recommended)

 Using one of the SAP NetWeaver BI reporting APIs (e.g. XMLA or

Ole DB for OLAP)

 3rd-party tool

 Microsoft BizTalk Server Adapter

 Upcoming SSIS 2008 certification for SAP BI 7.0

This paper will focus on using the XMLA interface in SAP NetWeaver BI. It‟s a

reporting API which was built to allow 3rd-party vendors to connect their reporting

tools like Microsoft SQL Server Reporting Services (Microsoft SSRS) to SAP

NetWeaver BI. The so-called „Open Hub Service‟ is the official interface in SAP

NetWeaver BI to unload data into external targets like Microsoft SQL Server Analysis

Services (Microsoft SSAS). It‟s still an option though to use a reporting API for this

purpose as long as the amount of data is limited or the unload of data won‟t happen

too often which is usually true for master data.

The XMLA Web service has to be configured and activated on the SAP side. Once

this is done it‟s possible to include it in a Visual S Studio C# project via „Add Web

Reference‟. As the communication works over HTTP/SOAP there is no need for any

additional driver or library installation.

Only objects on the “InfoProvider” level can be used for reporting within SAP

NetWeaver BI. So-called „characteristics” are „InfoObjects” which keep master

data. They are not on the „InfoProvider‟ level by default. This has to be configured

first. Then it makes sense to define a SAP NetWeaver BI query using the SAP Query

Designer. Doing it via a query gives a lot of flexibility in specifying which data should

be unloaded. A basic concept within SAP NetWeaver BI is to present an existing

query as a virtual cube to the outside world via the reporting APIs. An external

program sending a MDX query to SAP NetWeaver BI will in fact trigger the execution

of the existing SAP query and retrieve the result set from it as it would be a MOLAP

cube.

The same methodology could be used to unload subsets from an „InfoCube‟.

IMPORTANT: Please keep in mind that „UNLOADING‟ data from SAP BI requires

additional SAP licensing. The customer has to be aware of this and we recommend

that the customer checks this with SAP.

Page 6 of 14

Sample

The sample gives an overview about what‟s necessary as an absolute minimum to

retrieve some master data (for the test case just 24 generated data rows loaded from

a flat file) from SAP NetWeaver BI by using C# and XMLA. The focus is on

extracting data. There are no special considerations of security aspects described,

for example the SAP login is just hard-coded in the sample. Here is a short list of the

key steps:

 Activate the XMLA service on the SAP side (transaction shortcut /nSICF)

 Test the service by a right-click on the service -> „test service‟. The output

in the browser should look like on the screenshot in the walk-through section

further down

 Select the „characteristic‟ (InfoObject) keeping the master data which should

be unloaded and declare it as an „InfoProvider‟ in the modeling screen of the

warehouse work bench (transaction shortcut /nRSA1)

 Now use the SAP Query Designer and define a query on the corresponding

„characteristic‟. It‟s important to set the „external access‟ flag in the query

properties

 You can test the newly created query in the SAP NetWeaver BI Query

Monitor. The little C# console sample program should return the same result

as it can be seen in the SAP GUI (transaction shortcut /nRSRT2)

 Now we are ready to open a C# console program in VS. The first thing to do

is to add the XMLA service as a web reference. Just enter the URL which

was used for the browser test. It should then tell that it found a „Discover‟ and

an „Execute‟ function. The description should be : „MsXmlAnalysis‟

 Unfortunately there is a little issue with the code which is generated by VS for

the XMLA web service. It‟s necessary to add something to the properties

parameter definition for the Execute command. In Reference.cs you will find

the following definition of the parameter : „PropertiesType Properties‟ at the

Execute command code. You should add the following before „Properties

Type‟ : [XmlElement (typeof(DiscoverProperties))]

 Within the C# program you have to set the appropriate properties before it‟s

possible to execute a command. The sample code is shown further down.

The SAP login has to be specified as well as some XMLA specific properties.

Details about the XMLA part can be found in the official XMLA spec.

 XMLA works with MDX as the query language. In order to specify the MDX

command which will retrieve the data it‟s recommended to develop it within

the „mdxtest‟ transaction of SAP NetWeaver BI. The transaction shortcut

„mdxtest‟ leads to a screen in the SAP GUI which allows to create and test

MDX queries. Here you can select the SAP query which was created before

and is now presented as a virtual cube. The result of the MDX query should

be the same as with the query test in transaction RSRT2. Once this works

just copy the statement into the C# console program.

 The next hurdle is the question how to process the result set which the

Execute method returns. One option is to add the Analysis Services ADOMD

Page 7 of 14

Client as a reference. This will introduce a „CellSet‟. Use a XmlNodeReader

to convert the result set into a „CellSet‟. Then you can use all the CellSet

related methods to process the result set.

 Running the C# console test program should finally deliver the same output

as seen before in SAP NetWeaver BI

The nice thing about this approach is that it doesn‟t require any additional driver,

library or 3rd-party tool. As it‟s using an official SAP NetWeaver BI interface it also

doesn‟t matter on which platform (OS and DB) SAP NetWeaver BI is running.

Walk-Through

Figure 1 Activate the XMLA service on the SAP NetWeaver BI side

Page 8 of 14

Figure 2 Test of the XMLA web service via browser. The correct URL should return the

 same XML document as seen on this screenshot

Figure 3 Declare the ‘characteristic’ as an ‘InfoProvider’ to allow reporting

Page 9 of 14

Figure 4 Define a query on the ‘characteristic’ InfoProvider using the SAP Query

 Designer. IMPORTANT : set the ‘External Access’ flag in the query properties

Figure 5 Look for the just saved BI query in the Query Monitor (shortcut /nRSRT2)

Page 10 of 14

Figure 6 The output of the BI query are 24 test data rows which were loaded before

Figure 7 Add the XMLA web service as a ‘web reference’ to the VS C# console program

 by using the same URL as for the XMLA browser test

Page 11 of 14

Figure 8 It should detect two methods : Discover, Execute and it’s called

‘MsXmlAnalysis’

Figure 9 It’s necessary to fix the generated properties parameter definition for the

 Execute command in the Reference.cs file

Page 12 of 14

Figure 10 Create and test the MDX command to retrieve the data in the SAP MDX Test

 Editor. Once it works correct – just copy it over to the VS C# program

Figure 11 Result

Page 13 of 14

Sample code

using System;

using System.Data;

using System.Xml;

using System.Collections.Generic;

using System.Text;

using System.Net;

using Microsoft.AnalysisServices.AdomdClient;

using BWXMLA01.vsuhermann;

namespace BWXMLA01

{

class Program

 {

 static void Main(string[] args)

 {

 MsXmlAnalysis BWQuery;

 ExecuteCommand Command;

 XmlElement result;

 XmlNodeReader convert_result;

 DiscoverProperties properties;

 NetworkCredential login;

 CellSet cellset_result;

 TupleCollection tuples_on_columns;

 int i;

 int nr_tuples_on_columns;

 BWQuery = new MsXmlAnalysis();

 Command = new ExecuteCommand();

 properties = new DiscoverProperties();

 properties.PropertyList = new DiscoverPropertiesPropertyList();

 login = new NetworkCredential();

 login.UserName = "<SAP User Name>";

 login.Password = "<SAP Password>";

 BWQuery.Credentials = login;

 BWQuery.PreAuthenticate = true;

 properties.PropertyList.Content = "SchemaData";

 properties.PropertyList.Format = "Multidimensional";

 properties.PropertyList.DataSourceInfo = "default";

 Command.Statement =

 "select [TR6CH01].MEMBERS on rows from TR6CH01/TESTQ02";

 result = BWQuery.Execute(Command,properties);

 convert_result = new XmlNodeReader(result);

 cellset_result = CellSet.LoadXml(convert_result);

 nr_tuples_on_columns = cellset_result.Axes[0].Set.Tuples.Count;

 tuples_on_columns = cellset_result.Axes[0].Set.Tuples;

 for (i = 1; i <nr_tuples_on_columns; i++)

 {

 Console.WriteLine(tuples_on_columns[i].Members[0].Caption);

Page 14 of 14

 }

 Console.ReadLine();

 }

 }

}

References

SAP Help Portal

http://help.sap.com

Microsoft SAP Customer Information Center

http://www.microsoft.com/sap

 Microsoft SQL Server BI

http://www.microsoft.com/sql/solutions/bi/default.mspx

http://help.sap.com/
http://www.microsoft.com/sap
http://www.microsoft.com/sql/solutions/bi/default.mspx

